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Structural Engineering vs Mechanical Engineering

– Structural design checks limit states including:
– Ultimate limit state
– Serviceability limit state

– The ultimate limit state may be complete 
collapse, i.e.
– The displacements are nonlinear
– The material behaves nonlinearly

– Structural stability is affected by initial 
geometric imperfections, e.g.
– Out-of-plumb
– Out-of-straightness



The University of Sydney Page 3

Structural Design – What we do

– Structural design is probabilistically based
– Design criteria are in terms of probability of failure

– Design action S* = S*(x,t) = S[D(x), L(x,t), S(x,t), W(x,t), E(x,t), …] 
– Capacity R = R(x,t) = R[M(x,t), F(x)]
– S* and R are random variables
– Generally: S* = S*(x) and R = R(x)
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Structural Design – Actions (loads)

– Loads are expressed in terms of probability of exceedance
– AS/NZS 1170 Structural design actions. Part 0: General principles 

– Statistics are available for loads (mean, CoV, and distribution)
– E.g. D - Normal, L - Gamma distribution, W - Extreme Type I 

distribution
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Structural Design – Capacity (Strength)

– The strength of a structure depends on the material (M) and 
geometric (F) properties

– M: Provides relationship between stress and strain, typically (E, fy, 
fu, …) and a stress-strain curve + yield surface for combined 
stress, flow rules, etc.
– Steel, aluminium, etc (metals): M=M(x)
– Concrete, timber, etc: M=M(x,t)

– F: Tolerance in fabrication and erection, typically (t, b, 
imperfections)

– Statistics are available for common M and F, e.g. fy – Lognormal; 
E – normal;  t,b – Lognormal etc.
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Structural Design – design criteria

– Probability of failure

– X – vector of basic random variables, e.g. E, fy, D, L, etc.
– fx(x) – joint probability density function (PDF) of basic variable
– g – failure function, g(.) ≤ 0 implies failure, e.g. Dead and Live 

load combination:

– Reliability index (β)

– Design criterion:

𝑃 ൌ Pሾ𝑅 െ 𝑆∗  0ሿ ൌ Pሾ𝑔ሺ𝑅, 𝑆∗ሻ  0ሿ ൌ න… න 𝑓𝒙 𝒙 𝑑𝒙
ሺ𝑿ሻஸ

𝑔 ൌ 𝑅 െ 𝐷 െ 𝐿

𝛽 ൌ Φିଵሺ1 െ 𝑃ሻ

𝑃  𝑃 𝛽  𝛽or
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Structural Design – design criteria con’t

– Practical design uses nominal values of random variable, e.g. 
En, fy, Dn, Ln, etc

– Design check:

– ∑γiS*ni is the load combination, 
– Dead and live: ∑γiS*ni = 1.2Dn+1.5Ln

– Dead, live and wind: ∑γiS*ni = 1.2Dn+ψcLn+Wn

– Dead live and earthquake: ∑γiS*ni = Dn+ψcLn+En

– 𝜑 is the resistance factor

– Reliability calibration: Determine 𝜑 so that β ≥ β0 is satisfied
– Member level
– System level

𝜑𝑅 𝛾𝑆∗
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Structural Design – reliability calibration

– Member-based design
– Build model, apply loads, run analysis (elastic)  M, N, V …
– Design check (AS4100), e.g. simple beam: 𝜑Mp ≥ M
– Must be satisfied for all members and connections

– System-based design
– Build model, apply loads (D, L,W…) and introduce a load 

increment factor (λ), run fully nonlinear analysis (mimic actual 
behaviour)

– Design check: 𝜑sλu ≥ 1 

u
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Systems reliability calibration
Reliability analysis framework
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iv) Reliability analysis (e.g. FORM)

iii) Run Monte-Carlo simulations 
on random frames ⇒ R

ii)  Select cross-sections ⇒ different failure modes
Specify loading, e.g. gravity, 
and load ratios, e.g. Ln/Dn

i)  Select sample frames

Random variables:
Material: fy , E and σr
Geometry: t, b, geom. imperfections
Modelling uncertainty

R

QμQ

μR

Contour of fR, Q
45°

Safe (R > Q)

R – Q = 0
Failure boundary 
(limit state function)

Failure (R < Q)

v) Plot β vs ϕs curves
Repeat for other load ratios
Determine ϕs for given β
Repeat for other member sets
Repeat for other frames

Compute Pf
Calculate β=Φ‐1(Pf)
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Development of system-based design framework

– DP11 (Rasmussen, Zhang, Ellingwood): Connections 
assumed not to fail 

– DP16 (Rasmussen, Zhang, da Silva): Connection 
models included in calibration

– DP19 (Rasmussen, Zhang, Khezri, Deierlein): FE 
Modelling of connections including fracture – all 
limit states checked

– Finer discretisation, nDOF becoming large
– CPU time is becoming an issue
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Structures – Data-intensive applications

– Wind pressure on buildings

– Tall buildings are conventionally designed using expensive wind tunnel tests on 
scaled models

– Wind tunnel tests predict the pressure distribution on the building
– Simple linear interpolation prove inaccurate in highly nonlinear regions
– Machine learning techniques have proven effective to undertake regression and 

classification tasks in wind‐related applications

Hu, G., Liu, L., Tao, D., Song, J., Kwok, K.C.S., Investigation of wind pressures on tall building under 
interference effects using machine learning techniques. CoRR abs/1908.07307 (2019)
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Structures – Data-intensive applications con’t

Constitutive (material) modelling
– Conventionally approach: Condensed experimental data into 

deterministic laws that are coded in FE software
– Alternative: Use ML to extract stress-strain relationships from 

experimental or prior data, and implement routines in FE 
simulations
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Structures – Data-intensive applications con’t

Gaussian process regression-based constitutive models

Gaussian process regression（GPR) 
based Constitutive Modelling 

Experimental data

Data driven 
constitutive model 

Gaussian process 
regression 
algorithm  

Advantages

1. Both underlying relation and 
uncertainty of data could be 
captured

2. Underlying relation is 
expressed as a stochastic 
function transparently

3. No assumption on the model 
expression is required

4. Suitable for all materials

Data 
Driven
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Structures – Data-intensive applications con’t

Gaussian process regression-based constitutive models, cont

Gaussian Process (GP) define a
distribution over a stochastic
function.

𝑓~𝒢𝒫 𝑚ሺ𝑥ሻ, 𝑘ሺ𝑥, 𝑥′ሻ

Three samples of the function distributed 
as the GP with: 
mean function 𝑚 𝑥 ൌ 0.25𝑥ଶ and 

covariance function 𝑘 𝑥, 𝑥ᇱ ൌ exp ି ௫ି௫ᇲ మ

ଶ

Function values of n positions,
𝑓ሺ𝑥ଵ∗ሻ, 𝑓ሺ𝑥ଶ∗ሻ, . . . , 𝑓ሺ𝑥∗ሻ. . . , 𝑓ሺ𝑥∗ሻ or
𝑓 𝒙∗ , comply the multivariable
Gaussian distribution

𝑓 𝒙∗ ~𝒩 𝒎 𝒙∗ ,𝑲∗∗

𝑲∗∗ ൌ

𝑘 𝑥ଵ∗, 𝑥ଵ∗
𝑘 𝑥ଶ∗, 𝑥ଵ∗

⋮
𝑘 𝑥∗ , 𝑥ଵ∗

𝑘 𝑥ଵ∗, 𝑥ଶ∗
𝑘 𝑥ଶ∗, 𝑥ଶ∗

⋮
𝑘 𝑥∗ , 𝑥ଶ∗

⋯
⋯
⋱
⋯

𝑘 𝑥ଵ∗, 𝑥∗
𝑘 𝑥ଶ∗, 𝑥∗

⋮
𝑘 𝑥∗ , 𝑥∗

mean covariance
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Structures – Data-intensive applications con’t

– Gaussian process regression-based constitutive models con’t

Loads P1 and P1 – 𝒩ሺ15, 1.5ሻ kN/m 
Load W – Gamma (20, 7.4) kN

350*600

70
0*
70
0

Stress-strain relation

Chen, Shen and Zhang, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, 
Part A: Civil Engineering, 2021

• Data driven stochastic structural analysis is performed using Monte Carlo (MC) 
simulations (N=3000, Abaqus used)

• Both load uncertainty and material uncertainty are considered in this example

• The critical value of the deflection at point G is 𝑅 ൌ H/500 (20 mm)
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Structures – Data-intensive applications con’t

Gaussian process regression-based constitutive models con’t

COV Dataset 
size

Expectation (mm) Standard 
deviation (mm)

Probability 
of failure

True GPR True GPR True GPR

0.05
200

13.57
13.51

5.67
5.64

12.8%
13.1%

400 13.54 5.68 12.8%
800 13.55 5.65 12.9%

0.10
200

13.81
13.79

6.02
6.12

14.6%
14.7%

400 13.84 6.08 14.6%
800 13.83 6.07 14.7%

0.15
200

13.94
14.72

6.26
6.17

15.5%
17.8%

400 14.07 6.21 16.2%
800 14.03 6.22 16.0%

• A larger dataset size is required to obtain a good estimation of the expected 
deflection for data with high uncertainty level

• The probability of failure increases with the uncertainty level increasing
• Without considering the material uncertainty accurately, the probability of failure 

will be underestimated
• The probability of failure predicted by using the GPR model is conservative and 

will converge to the reference value with the number of data points increasing
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Structures – Data-intensive applications con’t

Deep learning-based method on seismic fragility analysis of 
bridges considering aging effects
– Seismic fragility: Conditional probability providing the likelihood 

of a structure (or component) exceeding a predefined level of 
damage for a given ground motion intensity

– Conventional fragility analysis method requires a series of 
nonlinear time history analysis (computationally expensive)

– Conventional fragility analysis method is not practical for:
– time-dependent seismic fragility analysis for deteriorating facilities 

considering aging effects 
– seismic assessment for a transportation network with many bridges

– For highly repetitive analyses, deep learning models can be 
good surrogates with high accuracy and efficiency. The 
mechanism of generating fragility curves using deep learning 
can be simply regarded as a decision-making process, which 
compares demand with capacity to classify whether the bridge 
exceeds the limit state or not. 
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Structures – Data-intensive applications con’t

Deep learning-based method on seismic fragility analysis of 
bridges considering aging effects, con’t
– Conventional fragility analysis process
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Structures – Data-intensive applications con’t

Deep learning-based method on seismic fragility analysis of 
bridges considering aging effects, con’t
– Alternative: For highly repetitive analyses, deep learning models 

can be good surrogates with high accuracy and efficiency 
– Generating fragility curves using deep learning can be regarded 

as a decision-making process, which compares demand with 
capacity to determine whether a limit state is exceeded or not

– Problem can be transformed into a binary classification problem  

Model Selection, Training 
and Test
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Structures – Data-intensive applications con’t

Deep learning-based method on seismic fragility analysis of 
bridges considering aging effects, con’t
– Results to date suggest the use of ML proves sufficient accuracy
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Structures – What we could do

Error identification in structural design
– Structural members and connections in steel framework tend to 

be standardised
– Each requires a calculation of strength and deformation 

response to a structural design code
– Thousands of strength calculations are available in design 

offices and could be used to train predictive models using ML
– Useful for design or error identification in design 
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Structures – What we could do

Optimised structural design equations
– Large experimental data sets are available for common types of 

structural members 
– Could be used to train predictive algorithms to optimise efficiency

1. Input parameters: Select input variables that have the most significant 
effects on the output variable(s),  (h, b, d, t, L, fy, …)

2. Choose ML algorithm to generate reasonably simple predictive models
3. Divide datasets is into two subsets (training/testing) model to generate 

and verify predictive model. 
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Structures – What we could do

Reformulate problems in terms of Bayesian 
statistics
– Where would this make sense?

– In problems requiring probabilistic assessment, e.g. 
reliability analysis

– In problems with a high degree of uncertainty, e.g. 
constitutive modelling of materials with high degrees 
of variability, (timber, 3D printed materials, …)

R. Ibanez, E. Abisset-Chavanne, Jose Vicente Aguado, David Gonzalez, Elias Cueto, Francisco Chinesta, A 
Manifold Learning Approach to Data-Driven Computational Elasticity and Inelasticity, Arch Computat
Methods Eng (2018) 25:47–57

– In time-dependent problems where data is collected that can inform the 
model, e.g. structural health monitoring of significant infrastructure (bridges, 
tunnels, tall buildings, …)

– In problems where the loading model is associated with significant 
reliability, e.g. design of wind turbine towers

– There is a field of research on statistical finite element analysis



The University of Sydney Page 24

Structures – What we could do

Reformulate problems in terms of Bayesian statistics, con’t
– What governing equations lend themselves to this?

– Dynamic structural analysis (vibrations, earthquake,…)

– Transport problems (advection-diffusion-reaction), e.g. carbonation, 
chloride ingress, hydration in concrete

– Fluid dynamics in wind and water applications, and fluid-structure 
interaction applications

– …

𝜕𝜙
𝜕𝑡 

𝜕
𝜕𝑥

𝛽𝜙 െ 𝐷
𝜕𝜙
𝜕𝑥

 λ𝜙 ൌ 𝑄

𝒎
𝜕ଶ𝒖ሺ𝒙, 𝑡ሻ
𝜕𝑡ଶ  𝒄

𝜕𝒖ሺ𝒙, 𝑡ሻ
𝜕𝑡  𝒌𝒖ሺ𝒙, 𝑡ሻ ൌ 𝒇ሺ𝒙, 𝑡ሻ

[1]  M.  Gharib,  M.  Khezri,  S.J.  Foster, Meshless and  analytical solutions  to  the  time-dependent advection-diffusion-reaction  
equation with  variable coefficients  and  boundary  conditions, Applied Mathematical Modelling 49 (2017) 220–242
[2]  M. Gharib, M. Khezri, S.J. Foster, A. Castel, Application of the meshless generalised RKPM to the transient advection-diffusion-
reaction equation, Computers and Structures, 193 (2017) 172–186
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