
FSA: Co-Designing Future
High Performance Systems
for Efficiency and Scalability

Shuaiwen Leon Song
Director, Future System Architecture Lab (FSA)

University of Sydney CS and UW Seattle ECE

DSI presentation, August 18th, 2021

I acknowledge the tradition of custodianship and law of
the Country on which the University of Sydney
campuses stand. We pay our respects to those who
have cared and continue to care for Country.

Our Research Overview

3

Programming and
execution model

Compiler

OS

Runtime

System
Architecture

HPC

SW

HW

Novel System Co-Design Quantum Compiler & Architecture

Our People and Collaborators

Data-Centric Bespoke Design
Ø We constantly struggle to identify the best design and optimization strategies to consider application

features, data characteristics, and the system constraints from software and hardware. We always work
under constraints unless we customize our own hardware and software for everything.

Ø Challenge: Hardware lottery between general-purpose design vs customized acceleration

HPC : Big Data

• Performance
• Scalability
• Energy-Efficiency
• Reliability

Edge/IoT/Embedded
Computing: Better Data

Real-time constraints
Storage constraints
Power constraints
Usability/Progammbility
Portability
Compatibility with cloud
Security/Privacy

Co-design Strategies

Focus of HPC Research

• Scalability, efficiency and optimization of scientific and non-
scientific applications under current hardware constraints;

• Effective big data reduction for scientific simulation and
modelling;

• High-performance System Designs for emerging ML services and
applications (SystemML)

HPC Architectures: Extreme Heterogeneity

7

Fig. The consequence of Moore’s Law is an increased reliance on heterogeneous hardware acceleration to continue
performance improvements. (Source: 2018 DOE ASCR Extreme Hetergenity Workshop)

• ECP RFI feedback from vendors suggests that exascale platforms and beyond will
become increasingly heterogeneous.

• Reports also suggest a variety of novel technologies are likely to be integrated into a
single extreme heterogeneous system.

• We already see sings of this in the planned system architectures for CORAL and APEX
exascale supercomputer acquisition.

Co-Design Dilemma: Architecture Becomes More Complex

8

Fig. Hybrid Cube Mesh NVLink Topology as used in DGX-1 with
V100 (courtesy of NVIDIA)

ü Even the NVLink design itself
exhibits heterogeneity: a fast
backbone ring is formed for V2.

Traditional Software Designs that do not
consider future complex architectures’ features

will no longer provide optimal efficiency!

Showcase I: Efficiency and Scalability

https://github.com/pnnl/s-blas

S-BLAS: High performance parse linear algebra kernels for complex multi-accelerator based HPC architectures

• Sparse-Matrix-Vector-Multiplication (SpMV)
• Sparse-Triangular-Solve (SpTRSV)
• Sparse-Matrix-Transposition (SpTrans)
• Sparse-Matrix-Matrix-Multiplication (SpMM)

Fast and Scalable Sparse Triangular Solver for Multi-GPU Based HPC Architectures,
IEEE ICPP 2021 (A)

10

The SOTA SpTrsv on Multi-GPU Based HPC Architectures

Ø The analysis costs significant overhead
Ø Require synchronization across levels

• cuSparse lib: csrsv2()
• Basic idea: some components are

independent and can be
processed simultaneously.

• A Synchronization-Free SpTrsv
• Basic idea: Migrating the level-sets analysis at

runtime
• Components are scheduled by the hardware

warp-switch of the GPU
• Update the intermediate value (in_degree and

left_sum) using GPU atomic operations

Data communication and atomic update cost too
much overhead on multi-GPUs!

11

SpTrsv with Unified Memory

• Convenient
§ Hide complexity from users

• Page fault mechanism
§ Coarse-grained data copy

• Data contentions
§ System-wide atomic update will

access the data simultaneously
• Workload unbalance

§ Dependency are unidirectional Require Low Overhead Fine-
Grained Communications!!

12

GPU CUDA NVSHMEM

• OpenSHMEM-based PGAS programming interface for multi-GPUs

• GPU-side interface allows GPU threads to
1. Access distributed memory via data movement API
2. Direct load/store (LD/ST) where GPUs are P2P-accessible
3. Highly-concurrent fine-grained messaging
4. Asynchronously one-side data communication

Peer Direct LD/ST and Global Remote Access

13

Using NVSHMEM for Resolving Dependency

• For SpTrsv, we convert the system-wide atomic update from unified memory to
NVSHMEM shared memory space

14

Workload Balance among GPUs

• Task Based Workload Distribution
§ More tasks per GPU: workload becomes more

balanced among GPUs
§ Less task per GPU: can exploit in-task data

locality for better performance

Three Approaches
• Balance components
• Balance nnz
• Component RR Our design can achieve an average of 3.53× speedup on a DGX-1 system and

3.66 × speedup on a DGX-2 system over the Unified-Memory design,
respectively.

Showcase II: Big Data Reduction via Lossy Compression

Scientific Simulations and Experiments: Flood of Data!

How SZ works?

Issues with SZ and Its Current FPGA Implementation

Temporal-Spatial Mapping

ACM PPoPP’20 (A)

We evaluate on three real-world datasets from SDRB
suite, showing 5.8× throughput on average, compared
with the current FPGA implementation.

Showcase III: System ML for Accelerated Scientific Discovery

• Innovative software-hardware co-design strategies for emerging ML model
architectures (with UW, MIT)

• Large-scale data-center and HPC ML services design and optimization (with
Alibaba Research)

• Noise and randomness control in ML training (with Google)
• Resource-constrained training and inference (with UW)
• Neural Architecture Search and Tiny ML (with Brown)

CNN Architecture Evolution

21

AlexNet: (8 layers, top-5: 83.6%)
VGG: (19 layers, top-5: 92.7%)
Yolo: (26 layers, real time: 45 fps)

AlexNet (2012)
VGG (2014)
Yolo (2014)

conv relu pool

Shallow Nets Deep Nets

GoogleNet (2014)

GoogleNet: (22 layers, top-5: 93.3%)

ResNet (2015)

Cerebral Cortex

ResNet: (152 layers, top-5: 96.43%)

DenseNet (2016)

DenseNet: (103 layers, top-5: 94.7%)

Linear vs. Non-Linear Networks

AlexNet, VGG16 and VGG19

• Static Dependency
• Predictable

LINEAR Non-LINEAR

ResNet, Inception and DenseNet

Join

Fan

• Dynamic Dependency
• Unpredictable

Challenge: Memory Shortage

23

ResNet50 ResNext101 for 3D data

0

5

10

15

20

25

30

ResNet-101 (64)

M
em

or
y

U
sa

ge
 (G

B)

others (context,
momentum)

workspace

pre-cached input
samples

intermediate feature
map gradients

intermediate feature
maps

parameter gradients

parameter

x Peak Runtime
Memory: 4%

q Ultra Deep Net is untrainable

q Network-wide memory allocation is
extremely wasteful

q Long training time affects hyper-
paramaters tuning

q Significantly restrict minibatch size
tuning, affecting parallelism, scalability

and energy efficiency

Negative Impact

Our Goal

24

Largest Accelerator Memory:
Tens of GBs

Training Memory Request:
Hundreds of GBs

training

high speed

State-of-the-art Frameworks

25

(1) Inefficient Memory Offloading
(2) No performance-memory trade-

off
(3) No minibatch-LR tuning

(1) No Liveness Analysis,
(2) Limited Support in
Non-linear Networks

(1) Inefficient Memory Offloading
(2) Speed-Centric

(3) No minibatch-LR tuning

Ø Dynamic memory provisioning framework for deep non-linear networks
Ø Recognizing non-uniform memory distribution across layers
Ø Runtime bound the minimal peak memory usage (𝑝𝑒𝑎𝑘! = max(𝑙")), at layer-wise

granularity

SuperNeurons Framework

Opportunity 1: Physical Memory Reuse

Core Idea
Reuse the same physical memory at different time partitions

Runtime Peak Memory (𝒍𝒑𝒆𝒂𝒌)

CONVCONV POOL FC S

CONVCONV POOL FC S

t0

t0

t1

Step 5

t0

t2 t3

t4t1 t2

Liveness Analysis

t0, t1, t2, t4,

Baseline

t0, t1, t2, t3, t4, t5, t6, t7, t8
4 Tensors 9 Tensors

Peak Runtime
Memory !

Example: Liveness analysis on AlexNet

0 10 20 30 40 50

Steps in an Iteration

0

500

1000

1500

2000

2500

M
e

m
o

ry

0

10

20

30

40

L
iv

e
 T

e
n

s
o

r
C

o
u

n
tsbaseline memory usage

backwardforward

baseline tensor counts

peak
m

It reduces more than 1/3 of memory requirement for AlexNet

Opportunity 2: Computation Pattern

29

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19
0

20

40

60

80

%
 o

f
co

m
p

u
te

 t
im

e

CONV FC DROPOUT SOFTMAX POOL ACT BN LRN

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19
0

20

40

60

m
em

o
ry

 u
sa

g
e CONV FC DROPOUT SOFTMAX POOL ACT BN LRN

Computation and Memory intensity differ across the layers:

Layers Comp (%) Memory (%) Checkpoint? (Y/N)
CONV ~50% ~50% Y

POOL, ACT, BN, LRN ~30% ~50% Y, but requires opt
DROPOUT, SOFTMAX, FC ~20% ~1% N

Unified Tensor POOL (UTP)
Key Operations:

Checkpointing Pre-fetch
• Offload outputs of “Y” layers to

external memory buffers
• Retrieve outputs of “Y” layers back to

accelerator memory

Extensible to Various Physical Memory Pools

LRU-Based Tensor Cache

0 10 20 30 40 50

Steps in an Iteration

0

500

1000

1500

2000

2500
M

e
m

o
ry

0

10

20

30

40

L
iv

e
 T

e
n

s
o

r
C

o
u

n
tsbaseline memory usage

baseline tensor counts

backwardforward

peak
m

reduced 357.2MB

Example: Liveness Analysis + UTP on AlexNet

It further reduces another 1/6 of memory requirement for AlexNet

Opportunity 3: Store vs. Recompute

32

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19
0

20

40

60

m
e
m

o
ry

 u
s
a
g

e CONV FC DROPOUT SOFTMAX POOL ACT BN LRN

Observation: POOL, ACT, LRN and BN forward computation only accounts for less than
10% of total time, but with 50% memory consumption.

ACTCONV POOL BN ACT

ACTCONV POOL BN ACT

t0

t0

t2

t2
t6

t1

t1

Memory-Centric (recompute dependencies) vs. Speed-Centric(reuse)

0 10 20 30 40 50

Steps in an Iteration

0

500

1000

1500

2000

2500
M

e
m

o
ry

0

10

20

30

40

L
iv

e
 T

e
n

s
o

r
C

o
u

n
tsbaseline memory usage

baseline tensor counts

forward backward

peak
m

reduced 245.77MBbottleneck,

max layer usage

Example: Liveness Analysis + UTP on AlexNet + Cost-Aware

Memory is bounded by the layer peak and peak is further
reduced for AlexNet

Many other works in this direction
• Machine Learning Optimizing Compiler vs. XLA and TVM (ASPLOS’22, under

review, A*)
• Bayesian accelerator design for cloud and autonomous driving (MICRO’20,

MICRO’21, A*)
• Large-scale Bayesian inference system for Argonne’s genome analysis

application and cosmic tagger application (Supercomputing’21, A*)
• LSTM and Transformer’s accelerator design (ISCA’21, HPCA’21, A*)
• Capsule network acceleration design (HPCA’2020, TPDS architecture

research highlight 2020, A*)
• Reinforcement learner for interactive virtual reality system design (

ASPLOS’21, A*)

Edge/IoT/Embedded Scenarios
• Real time constraint, low power , low storage require better quality of data;
• We do not have luxury of even powerful chips; everything is working under a

tighter constraints;
• We have to overperform our design to match users’ demand;
• We have to squeeze every bit of efficiency out of our design;
• Better optimization, better hardware utilization, better compatibility with

cloud, better security mechanisms, etc.

Data-centric Design is very important !

36

Showcase IV: Lightweight Reinforcement Learning Based VR SoC

• Strong relationship between users’ input and rendering workload

• Q-learning Based Eccentricity Controller using User Input

• Index the user input to simplify the design complexity for mobile devices

&

+

6DoF of Head Fovea Movement

Index 6 bits for head movement
2 bits for fovea position

37

Software-Only Prototyping on Unity

Collaborative Foveal Rendering
Local-only Rendering

38/20

Contact me if you are
interested in our projects!

HPC
Memory and Data Centric Accelerator Design
Quantum Compiler and Architecture Design

…

Shuaiwen.song@Sydney.edu.au
https://shuaiwen-leon-song.github.io/

mailto:Shuaiwen.song@Sydney.edu.au

