Future

Igning

High Performance Systems

for Eff

Co-Desi

FSA

i v
>~
-
@) —
) mm ol_nw
o O <
m 0 © T N
C o © =5
o 2 %3
C O.m.ma
G Y < 5
O
S §igz
Wn
0 ©O
- .mm,w
e aucm
o mm u._w.y
(@ hF...m
T 2
£ 3

| acknowledge the tradition of custodianship and law of
the Country on which the University of Sydney
campuses stand. We pay our respects to those who
have cared and continue to care for Country.

. o—
Our Research Overview oTFSAPo
g —o

!: HPC . Novel System Co-Design_| Quantum Compiler & Architecture

Programming and * * *

execution model

Compiler * * *

(0N

Runtime * * * SW

System * HW
Architecture

) o

Our People and Collaborators

Pacific etozaurbs226M
Northwest to stutitanl
AAAAAAAAAAAAAAAAAA vgolon dgeT

S a
£ Google g Agonne™!

Data-Centric Bespoke Design

» We constantly struggle to identify the best design and optimization strategies to consider application
features, data characteristics, and the system constraints from software and hardware. We always work
under constraints unless we customize our own hardware and software for everything.

» Challenge: Hardware lottery between general-purpose design vs customized acceleration

Edge/loT/Embedded
Computing: Better Data

HPC : Big Data

esign Strategies Real-time constraints
Storage constraints
Power constraints
Usability/Progammbility
Portability
Compatibility with cloud
Security/Privacy

* Performance
 Scalability

* Energy-Efficiency
* Reliability

Focus of HPC Research

* Scalability, efficiency and optimization of scientific and non-
scientific applications under current hardware constraints;

* Effective big data reduction for scientific simulation and
modelling;

* High-performance System Designs for emerging ML services and
applications (SystemML)

HPC Architectures: Extreme Heterogeneity

‘Traditional CPUs\ ‘ Accelerators | ‘ Memory \ ‘ Interconnect \

B el
-

CORE {9
X-series

3D-Stack STT-RAM PCI E OPI

Vb T b L
: I N, B E v
- P 1
- - et
PRI
& Mbiocisson 5) d
: { ¥ :
o -
W
Al
' b3
A .

 ECP RFI feedback from vendors suggests that exascale platforms and beyond will
become increasingly heterogeneous.

* Reports also suEgest a variety of novel technologies are likely to be integrated into a
single extreme heterogeneous system.

* We already see sings of this in the planned system architectures for CORAL and APEX
exascale supercomputer acquisition.

PCM NVLInk OMNI-PATH

Co-Design Dilemma: Architecture Becomes More Complex

Fig. Hybrid Cube Mesh NVLink Topology as used in DGX-1 with
NVIDIA DGX-1 V100 (courtesy of NVIDIA)

Explore the powerful components of DGX-1

CPU CPU
o L1

High-speed interconnect 200 GB/s per GPU, 5X

e BE | | |
g .~
faster than current PCle Gen3 x16 interconnections. . S\
EL XE 3 .
or boot, storage manat - .-
ik c i F

% - PCle Switches PCle Switches

LB

Traditional Software Designs that do not
consider future complex architectures’ features
will no longer provide optimal efficiency!

==QPI @ PCl-e switch 8 QPI
== PCl-e O GPU o
== NVLink ® CPU

NVLink PCle QPI

v’ Even the NVLink design itself
exhibits heterogeneity: a fast
backbone ring is formed for V2.

(A) P100-based DGX-1 with NVLink-V1 (B) V100-based DGX-1 with NVLink-V2

Showcase [: Efficiency and Scalability

S-BLAS: High performance parse linear algebra kernels for complex multi-accelerator based HPC architectures

https://github.com/pnnl/s-blas

e Sparse-Matrix-Vector-Multiplication (SpMV)
e Sparse-Triangular-Solve (SpTRSV)

e Sparse-Matrix-Transposition (SpTrans)

e Sparse-Matrix-Matrix-Multiplication (SpMM)

—1 ¢ ~7
Fast and Scalable Sparse Triangular Solver for Multi-GPU Based HPC Architectures,
IEEE ICPP 2021 (A) FSA Pacific

J,' — o Northwest

NATIONAL LABORATORY

The SOTA SpTrsv on Multi-GPU Based HPC Architectures

e cuSparse lib: csrsv2()

e e o level 0
* Basic idea: some components are /(: o / \ |
independent and can be s [_ —
orocessed simultaneously g (» The analysis costs significant overhead
¢ ‘1 » Require synchronization across levels
-4 5 - - v 77 <
| (- T N
5| @ @ o0 |\ AW
7 \. w .Qw, 7. ’ level 3

level 4

* A Synchronization-Free SpTrsv
* Basicidea: Migrating the level-sets analysis at
runtime

Minimum lock-step SIMD
. threads working for a

component of x.

 Components are scheduled by the hardware
warp-switch of the GPU
e Update the intermediate value (in_degree and

Data communication and atomic update cost too
much overhead on multi-GPUs!

left_sum) using GPU atomic operations

SpTrsv with Unified Memory

* Convenient eGP0 GPU 1
= Hide complexity from users | ' '

* Page fault mechanism

Unified MerLory

= (Coarse-grained data copy

* Data contentions |
= System-wide atomic update will
access the data simultaneously *

* Workload unbalance
= Dependency are unidirectional Require Low Overhead Fine-

Grained Communications!!

GPU CUDA NVSHMEM

* OpenSHMEM-based PGAS programming interface for multi-GPUs

* GPU-side interface allows GPU threads to
1. Access distributed memory via data movement API
2. Direct load/store (LD/ST) where GPUs are P2P-accessible
3. Highly-concurrent fine-grained messaging
4. Asynchronously one-side data communication

GPUO . GPU1 " GPUn

(PE 0) (PE 1) (PE n)
© f - ‘
S 8 %y PUT(&y, 8x, 1), | %Y %y
@ 8 4] s
- WV GET(&x, &y, 1)
(T :
s v
£3
t <
Q.

Peer Direct LD/ST and Global Remote Access

Using NVSHMEM for Resolving Dependency

* For SpTrsv, we convert the system-wide atomic update from unified memory to

NVSHMEM shared memory space

Solve device x:
for all i € dev.x do
x.in.degree[i] + 0
while d.in.degree[i]+1 # x.in.degree[i] do

> parallel in warps

for all d € ngpu do > parallel in threads
if rin.degree[i][d] # O then
r.in.degree[i][d] < get(s.in.degree(i].d)

x.in.degree[i] «— reduction(*r.in.degree[i])

for all d € ngpu do > parallel in threads
r.left.sum(i][d] «— get(s.left.sum[i].d)

x.left.sum(i] < reduction(*r.left.sum(i])
x[i] < b[i] - d.left.sum[i] - x.left.sum(i]
x[i] « x[i}/val[col.ptr[i]]
for all j € nnz; do

rid + row.idx([j]

if rid € dev.x then
d.atomic.add(&d.left.sum(rid], val[j]x[i])
d.atomic.incr(&d.in.degree(rid])
else B
d.atomic.add(&s.left.sum(rid], val[j]x[i]))
d.atomic.decr(&s.in.degree[rid])

> parallel in threads

Private Memory k

d.left.sum | %

Thread 1

i

..

2 | L
/_S‘Q_down_synci()

| Warp k: Thread 0 Thread 1

£1 down_ synci():

| rleft.sum []

x.left.sum [8]

..

13

Workload Balance among GPUs

_ GPUO GPU1 GPUO GPU 1 /_GPU 0 GPU 1
e v -
- e ww Three Approaches
..‘. ".. .‘.. * Balance components

Our design can achieve an average of 3.53x speedup on a DGX-1 system and

3.66 x speedup on a DGX-2 system over the Unified-Memory design,

respectively.

i rdoR DdstU VVUIRIUAU ISt TUULTUT é— Lcol 0 | Lcol 1 | Lecol 2 | Lcol 3 | Lcol 4| Lcol 5| Lcol 6 | Lcol 7
= More tasks per GPU: workload becomes more 3 Bo | B2 B2 |B |[B4 |B5 |8 |&
balanced among GPUs © |—,-,—| |—;—| '—;—' I—;—'
(]
» Less task per GPU: can exploit in-task data < Task 0 Task 1 Task 2 Task 3
locality for better performance > Xo, X1 X2 Xs | [XaXs Xo X7
g \A/]
I3 [GPUO] [GPU1
(V]

Showcase |I: Big Data Reduction via Lossy Compression

Background Introduction Design Evaluation Conclusion
@000 00 000000 00000 00

Trend of Supercomputing Systems
Gap Between Compute and 1/O

The compute capability is ever growing while storage capacity and bandwidth are developing more
slowly and not matching the pace.

supercomputer year class PF MS SB MS/SB PF/SB
Cray Jaguar 2008 1 PFLOPS 1.75PFLOPS 360TB 240GB/s 1.5k 7.3K
Cray Blue Waters 2012 10 PFLOPS 13.3 PFLOPS 1.5 PB 1.1 1B/S 1.3k 13k
Cray CORI 2017 10 PFLOPS 30 PFLOPS 1.4 PB 1.7 TB/S® 0.8k 17k
IBM Summit 2018 100 PFLoPS 200 pPFLoPs >10pPB** 2.571B/s >4k 80k

PF: peak FLOPS MS: memory size SB: storage bandwidth
* when using burst buffer *® counting only DDR4 Source: F. Cappello (ANL)

Table 1: Three classes of supercomputers showing their performance, MS and SB.

o—

O FSA
g —o

é)‘—o

October 5, 2020 - PACT '20, Virtual Event - cuSZ - E

Scientific Simulations and Experiments: Flood of Data!

Today’s scientific research using simulations or instruments
produces extremely large datasets

o Many datasets are in petabyte (PB = 10*° Bytes)!

Cosmology Simulation

o HACC: hardware/hybrid accelerated cosmology code (twice IEEE/ACM
Gordon Bell Prize Finalists)

o A total 20 PB data when simulating one trillion of particles
o Peta-scale system’s file system ~ 20 PB

o Mira supercomputer has 26 PB FS, 20 PB / 26 PB ~ 80%

o NSF Blue Waters (1TB/s I/0 bandwidth), 20 x 10" / 10** seconds
(5h30m) to store the data

o Data reduction of about a factor of 10 is needed [currently drop 9
snapshots over 10 (called decimation in time)

How SZ works?

DECORRELATION APPROXIMATION CODING
N . . with strict .
initial data + input predlctlon] lossy quantlzatwn] error control | variable-length | outpur lossily comp
arameters ——»| linear (1D), or > linear-scaling, > (Huffman code) -ressed data
P multidimensionalJ of prediction errorsJ low entropy

onss)
C

bincode: 1 (offset)

4)

» Lorenzo predictor allows arbitrary-dimensional prediction.

kj 1 |
b S (T =0) oDy 0 ele
» Single-layer form Lorenzo predlctor works the best generally [Tao “ o- :.’4\
‘ predicted

et al. 2017]. 2D form: v

. D4 D = d
£(Do0) = dot ([1 3], [a= 7 oo])- £0

value

oee90

true value
» Customized Huffman encoding O) O 0O S 2
» sizeof(T)-byte long symbol to Huffman code @ processed O processing
» high quantization quality (aggregated in center) makes Huffman O unprocessed

linear-scaling
quantization

coded bitstream more possible to further gzip Lorenzo (£) prediction

Issues with SZ and Its Current FPGA Implementation

» Low throughput of SZ
» lack of parallelism: SIMD and SIMT cannot apply

» Limitations in FPGA GhostSZ
» totally performance-driven design
» 3 predictors in use, need extra bits to encode
» more “workflow pipelines” (more resource)
» low compression ratio

encoding
predictors (2 bits)

GhostSZ

encoding prediction error
in quantized form (14 bits)

WAVESZ, SZ-1.4

encoding prediction error
in quantized form (16 bits)

» New use scenarios of adopting FPGA

» real-time processing; “inline processing” (Intel, 2018)
» ExaNet—an FPGA-based direct network architecture of
the European exascale systems [Ammendola et al. 2018]

j+0 i+l j+2 j+3

©0 00 -
R) iteration
m+0

‘,C) Q O]
XXX

iteration
m+1

® 0O O

IEXE

iteration
m+2

Figure 1: Loop-carried
dependencies due to
writeback.

“hard » “easy”
to encode to encode
outlier outlier

Bradius B

[P |
I 1

capacity
Figure 2: General

distribution pattern of
quantization code.

Distribution of
Prediction Errors

- 300
w
€ W sz14
-2m-§
2 SZ-1.0
B ChostSZ

- 100

—0.01 0.00 0.01

Figure 3: CESM-ATM
CLDLOW.

Temporal-Spatial Mapping

d [It takes A cycles to startl_(i>+ 1, %) since (i, *)] gier[z?i((i;ncy ciiti:ittiiz:

idxo—>0 1 2 3 4 .- i 41

090 0000000000000 00000 0000 S

" 0OOOOO‘..Q.‘.‘."Q..\‘.“’....O w

We evaluate on three real-world datasets from SDRB
suite, showing 5.8x throughput on average, compared

with the current FPGA implementation.

» FPGA + wavefront memory layout = more pipelining control

» Ideally, suppose A cycles to finish (prediction + quantization), no stall if
O Il = 1, and @ (vertically) iterating over A points from (r,c) to (r, c+1)

» BopyY (“perfect loop”) unrolled with factor A (= vertical dimension) and Il = 1

ACM PPoPP’20 (A)

Showcase llI: System ML for Accelerated Scientific Discovery

* Innovative software-hardware co-design strategies for emerging ML model
architectures (with UW, MIT)

 Large-scale data-center and HPC ML services design and optimization (with
Alibaba Research)

 Noise and randomness control in ML training (with Google)

 Resource-constrained training and inference (with UW)

 Neural Architecture Search and Tiny ML (with Brown)

2lto2urosz2esM
to stutitenl
veolonrosT

Google

CNN Architecture Evolution

Cerebral Cortex

AlexNet (2012) ‘ . conv
VGG (2014))

Yolo (2014) ResNet (2015) g conv

depth
concat

Nt

GoogleNet (2014)

depth
concat

AlexNet: (8 layers, top-5: 83.6%)
VGG: (19 layers, top-5: 92.7%)
Yolo: (26 layers, real time: 45 fps)

GoogleNet: (22 layers, top-5: 93.3%)

DenseNet (2016)

ResNet: (152 layers, top-5: 96.43%)
DenseNet: (103 layers, top-5: 94.7%)

conv

Linear vs. Non-Linear Networks

LINEAR

/ AlexNet, VGG16 and VGG19 \

Forward params
conv__| buff params

CONV }—>| POOL }—>| FC |—>|Softmax|

prob¢

17--1 CONV |<-f61 POOL |<—{51*FC |« 1 {Softmax|

Backward grad current grad
<— conv_buff

e Static Dependency
* Predictable

/ Non-LINEAR \
ResNet, Inception and DenseNet
Join
CONV " POOL M FC |—>|Softmax|
Ry prob
‘ ------- 15--- g~
-'171 CONV <[POOL |<15| FC |eyyr |Softmax|
T current
Fan .
CONV |—>| POOL | Forward
t1 T FC |2>{Softmax]
t2t3 pr|ob

l‘ * AR
\ t7 ~\\
t8.%{ CONV |«-*{ POOL |\ 6 'y Backward

[oATAR } current] FC _j<yg{Softmax]

 Dynamic Dependency

. /

197 { CONV fa--eoemevov
\ e Unpredictable /

23

Challenge: Memory Shortage

Memory usage [GB]

Memory Usage (GB)

o ResNet50

50
40
30 &
7777777777 \\1, e e e e e e e e e e e —— | I, Z.
eSS R I $ e o
384 512 640
Batch size

m others (context,
30 momentum)

m workspace
25

pre-cached input
samples

N
o

m intermediate feature
map gradients

=
[65]

m intermediate feature
maps

=
o

m parameter gradients

m parameter

Peak Runtime
ResNet-101 (64) Memory' 4%

o8 ResNext101 for 3D data
50

usage [GB]
8

Mem

(224%224)*128 (224*224)*256 (448*224)*128 (448*224)*256
Input size
[(height * width) * length]

Negative Impact

O Ultra Deep Net is untrainable

O Network-wide memory allocation is
extremely wasteful

U Long training time affects hyper-
paramaters tuning

O Significantly restrict minibatch size
tuning, affecting parallelism, scalability
and energy efficiency

Our Goal

9

Largest Accelerator Memory:
Tens of GBs

24

training

high speed

v

Training Memory Request:
Hundreds of GBs

State-of-the-art Frameworks

Caffe “ioch F

TensorFlow

(1) Inefficient Memory Offloading (1) Inefficient Memory Offloading
(2) No performance-memory trade- (2) Speed-Centric
off (3) No minibatch-LR tuning
(3) No minibatch-LR tuning

(1) No Liveness Analysis,
(2) Limited Support in
Non-linear Networks

SuperNeurons Framework

» Dynamic memory provisioning framework for deep non-linear networks

» Recognizing non-uniform memory distribution across layers

» Runtime bound the minimal peak memory usage (peak,, = max(l;)), at layer-wise
granularity

25 ERoRE: 2018

Opportunity 1: Physical Memory Reuse

—)lSoftmaxf'

DATAO —>»{CONV 1 —>»| POOL2 CONV3——»| FC4
subsequent layers, |current
v t6, 19, 10 «— | BB
DATA11{€«—{CONV1(CONV9 l«—{ POOL8|le—- FC7
t8, 19 t7.18,t10 1,13, 17,1 :

1

Softmaxg

Core Idea

Reuse the same physical memory at different time partitions

Liveness Analysis

Runtime Peak Memory (Leqk)

Step 5
t0
t0 tl t2
CONV T CONV /| POOL |=— FC
0 ", t1 ", 0 14
< 4 P
CONV laereneens CONV |feerreeeee] POOL |asseeeeee] FC faweeeeee]
Liveness Analysis Baseline

t0, t1, t2, t4,

4 Tensors

t0, t1, t2, t3, t4, t5, 16, t7/, t8

9 Tensors

Example: Liveness analysis on AlexNet

2500 . f T T T
baseline memory usage 1 a0
2000 baseline tensor counts
2" <«— forward peakm backward ——>» _ 30
g 1500 -
120
b} ;
= 1000
500 B | 10
O : : 1 : 1 0
0 10 20 30 40 50

Steps in an lteration

It reduces more than 1/3 of memory requirement for AlexNet

Live Tensor Counts

29

Opportunity 2: Computation Pattern

£ 80/ [_]conv [Fc IEIDROPOUT [SOFTMAX I POOL [JACT BN MEMILRN|

2 60 -

Q.

g 40 -

5201

#ollmmenn o 1 I [W N B J T

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19

Q %]:éONv B FC I DROPOUT [SOFTMAX IEPOOL [JACT BN -_ LRN | -
@ 40 -

-

o

NEIIFAR AN

GBI 10 I Y

o

AlexNet Inception_v4

ResNet101 ResNet151

ResNet50 VGG16 VGG19

Computation and Memory intensity differ across the layers:

Layers
CONV

POOL, ACT, BN, LRN

DROPOUT, SOFTMAX, FC

Comp (%) Memory (%) Checkpomt’-’ (Y/N)

~50%
~30%
~20%

~50%
~50%
~1%

Y, but requires opt
N

Unified Tensor POOL (UTP)

Key Operations:

-

o

~

/

Checkpointing) Pre-fetch
Offload outputs of “Y” layers to * Retrieve outputs of “Y” layers back to
external memory buffers accelerator memory

Extensible to Various Physical Memory Pools
tensor tensor tensor tensor tensor tensor
1 2 3 AL n-2 n-1 n
A A A A A
Y Y Y Y Y
Unified Tensor Pool Abstraction
x x I)\
D2H P2P GPU-Direct RDMA
Y Y ¥ ¥
Local CPU | | Other Local []|Other Network | [Other Network
Local GPU DRAM DRAM | |GPUDRAM ||| GPUDRAM || CPU DRAM
!

LRU-Based Tensor Cache

Example: Liveness Analysis + UTP on AlexNet

2500 — .
baseline memory usage . |
2000 baseline tensor counts

40

<«<— forward backward—> - 3
educed 357.2

n
II‘

Qmy
L
.“

Steps in an lteration

It further reduces another 1/6 of memory requirement for AlexNet

Live Tensor Counts

32

O

oportunity 3: Store vs. Recompute

(o2}
o

[]coNv Il Fc Il prorPouT IisoFTMAX Il rPooL [JACT[/BN M LRN

5
o
I
|

memory usage
N
o

L i 1

AlexNet Inception_v4 ResNet101 ResNet151 ResNet50 VGG16 VGG19

Observation: POOL, ACT, LRN and BN forward computation only accounts for less than
10% of total time, but with 50% memory consumption.

t0 t1 £2
— CONV *» ACT POOL — BN ™ ACT ——
t0 £1 ", t2
| : ! 6 |
grrnnnnnnny CONV = nmnnnnnn ACT PHEEERETIT POOL Qrrmnnnnnny BN PP ACT D P

Memory-Centric (recompute dependencies) vs. Speed-Centric(reuse)

Example: Liveness Analysis + UTP on AlexNet + Cost-Aware

2500 . I T T T m
baseline memory usage _ la0 £
2000 baseline tensor counts g
2‘ 1500 <«— forward backward ——>» - 30 (@)
i
g bottleneck, reduced 245.77MB 8
@ 1000 -max layer usage............... — et R 120 ¢
= e /N /PRak,, 2
500 /.\ e = 110 o
---- - & 2
- —

0 ' | L | 0

0 10 20 30 40 50

Steps in an Iteration

Memory is bounded by the layer peak and peak is further
reduced for AlexNet

Many other works in this direction

* Machine Learning Optimizing Compiler vs. XLA and TVM (ASPLOS’22, under
review, A*)

* Bayesian accelerator design for cloud and autonomous driving (MICRO’20,
MICRO’21, A*)

* Large-scale Bayesian inference system for Argonne’s genome analysis
application and cosmic tagger application (Supercomputing’21, A*)

e LSTM and Transformer’s accelerator design (ISCA’21, HPCA’21, A*)

e Capsule network acceleration design (HPCA’2020, TPDS architecture
research highlight 2020, A*)

* Reinforcement learner for interactive virtual reality system design (
ASPLOS’21, A*)

Edge/loT/Embedded Scenarios

* Real time constraint, low power, low storage require better quality of data;

* We do not have luxury of even powerful chips; everything is working under a
tighter constraints;

* We have to overperform our design to match users’ demand;
* We have to squeeze every bit of efficiency out of our design;

* Better optimization, better hardware utilization, better compatibility with
cloud, better security mechanisms, etc.

Data-centric Design is very important |

Showcase IV: Lightweight Reinforcement Learning Based VR $SoC

« Strong relationship between users’ input and rendering workload

Index

6 bits for head movement
' 2 bits for fovea position

6DoF of Head Fovea Movement

 Index the user input to simplify the design complexity for mobile devices

Software-Only Prototyping on Unity

| ‘ Start Server

ok

Start Client

TCoIIaborative Foveal Rendering

Local-only Rendering

el
FSA O
—o

Contact me if you are
interested in our projects!

o1

HPC
Memory and Data Centric Accelerator Design
Quantum Compiler and Architecture Design

Shudiwen.song@Sydney.edu.au
https://shuaiwen-leon-song.github.io/

Australian Government

Google

Australian Research Council

Made in
Australia
from 0%

Australian
ingredients

mailto:Shuaiwen.song@Sydney.edu.au

