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ML Framework for Engineering
Classical physics
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ML Framework for Engineering
Classical physics + machine learning
Measured data
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ML Framework for Engineering
Optimise controls
Measured data
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Optimisation Framework
AutoDiff with PyTorch

• Analytical derivatives: chain rule as code runs


• Complex models


• Gradient-based optimisation


• Probabilistic models by re-parameterisation trick
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Physics informed neural net: Solve PDEs with NN

• Solve for all possible parameters


• Include data


• Design NN architecture to satisfy 
physical laws


• Can NNs always find good 
solutions?


• Uncertainty propagation through 
PDE


• Model calibration

Opportunities for DCE
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Opportunities for DCE

• Develop or extend a python 
package


• Specifically for digital twins


• Real-time data


• Probabilistic or deterministic 
models and NN

Application to Digital twins
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Demonstrator Ideas 
In Mineral Processing



Theory

• NN for grain kinematics (as 
opposed to PDEs)


• Grain specific loss function


• Inverse problem: what is the 
physical law or material? 


• E.g. geotechnical: porosity, 
permeability, strength


• E.g. transient response

Adapt physics informed neural nets to grains

Grain Grain



Applications
Predict flow features

• Energy efficiency of mineral 
processing equipment


• Particle Mixers


• Powder “flowability”


• Granular wear and tear

Rock + slurry. Sinnott, 2017, Minerals Engineering (data 61)



Rotating drum
Optimise milling efficiency

1. Input: grain size, geometry, …


2. Train NN to results of DEM. 
Predict: kinematics and/or energy


[Option: Bayesian Variational 
Inference]


3. Optimise energy required by auto-
diff through NN - with gradients

z = controls e.g. rotating speed

Posterior Distribution of Energy 
Efficiency



1. Input: grain size, geometry, …


2. Train NN to results of DEM. 
Predict: kinematics and/or energy


[Option: Bayesian Variational 
Inference]


• Add sensors as inputs


3. Optimise energy required by auto-
diff through NN - with gradients

z = controls e.g. rotating speed

Posterior Distribution of Energy 
Efficiency

Optimise milling efficiency
Rotating drum


