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ML Framework for Engineering
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ML Framework for Engineering

Classical physics + machine learning
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ML Framework for Engineering
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Optimisation Framework
AutoDiff with PyTorch

* Analytical derivatives: chain rule as code runs
« Complex models
* Gradient-based optimisation

* Probabilistic models by re-parameterisation trick
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Opportunities for DCE

Physics informed neural net: Solve PDEs with NN

e Solve for all possible parameters

e Include data e L = WqataZ data + WpDE-ZPDE.

* Design NN architecture to satisfy
physical laws

e Can NNs always find good

solutions?
o0C 07
 Uncertainty propagation through P Yy
PDE

e Model calibration



Opportunities for DCE

Application to Digital twins

* Develop or extend a python
paCkage Package

Geometry

o Specifically for digital twins

PDE

Data

e Real-time data

Models

* Probabillistic or deterministic Bayesian Inference

models and NN Solver




Demonstrator Ideas
In Mineral Processing




Theory

Adapt physics informed neural nets to grains

* NN for grain kinematics (as
opposed to PDEs)

» Grain specific loss function Z = WataZ data + WpDEZLPDE

v

<L = wdatagdata + W

* |nverse problem: what is the

physical law or material? o

Grain Grain

* E.g. geotechnical: porosity,
permeability, strength

 E.g. transient response



Applications

Predict flow features

* Energy efficiency of mineral
processing equipment

e Particle Mixers
 Powder “flowabllity”

e (Granular wear and tear

Rock + slurry. Sinnott, 2017, Minerals Engineering (data 61)



Rotating drum

Optimise milling efficiency

1. Input: grain size, geometry, ... /

2. Train NN to results of DEM.
Predict: kinematics and/or energy

[O ptiOn: BayeSian Variational Posterior Distribution of Energy
Effici
I ﬂfe reﬂCe] \ Iciency

3. Optimise energy required by auto-
diff through NN - with gradients

Z = controls e.qg. rotating speed



Rotating drum

Optimise milling efficiency

1. Input: grain size, geometry, ... /

2. Train NN to results of DEM.
Predict: kinematics and/or energy

[O ptiOn: BayeSian Variational Posterior Distribution of Energy
Effici
I ﬂfe reﬂCe] \ Iciency

» Add sensors as inputs R A

3. Optimise energy required by auto-
diff through NN - with gradients

Z = controls e.qg. rotating speed



